Gender and Ethnicity as Moderators: Integrative Data Analysis of Multidimensional Family Therapy Randomized Clinical Trials

Paul E. Greenbaum and Wei Wang
University of South Florida

Craig E. Henderson and Lisa Kan
Sam Houston State University

Kristin Hall
University of South Florida

Gayle A. Dakof and Howard A. Liddle
University of Miami Miller School of Medicine

This study examined gender and ethnicity as moderators of Multidimensional Family Therapy (MDFT) effectiveness for adolescent drug abuse and illustrated the utility of integrative data analysis (IDA; Bauer & Hussong, 2009) for assessing moderation. By pooling participant data from 5 independent MDFT randomized clinical trials (RCTs), IDA increased power to test moderation. Participants were 646 adolescents receiving treatment for drug use, aged 11 to 17 years ($M = 15.31$, $SD = 1.30$), with 19% female ($n = 126$), 14% ($n = 92$) European American, 35% ($n = 225$) Hispanic, and 51% ($n = 329$) African American. Participants were randomized to MDFT or active comparison treatments, which varied by study. Drug use involvement (i.e., frequency and consequences) was measured at study entry, 6-, and 12-months by a 4-indicator latent variable. Growth curve change parameters from multiple calibration samples were regressed on treatment effects overall and by moderator subgroups. MDFT reduced drug use involvement ($p < .05$) for all participant groups. Pooled comparison groups reduced drug use involvement only for females and Hispanics ($ps < .05$). MDFT was more effective than comparisons for males, African Americans, and European Americans ($ps < .05$; Cohen’s $d = 1.17$, 1.95, and 1.73, respectively). For females and Hispanics, there were no significant differences between MDFT and pooled comparison treatments. Cohen’s $d = 0.63$ and 0.19, respectively. MDFT is an effective treatment for drug use among adolescents of both genders and varied ethnicity with males, African American, and European American non-Hispanic adolescents benefiting most from MDFT.

Keywords: adolescents, integrative data analysis, drugs, treatment

The extent that participant characteristics are associated with outcome disparities for behavioral treatments generally, and adolescent drug abuse treatments in particular, is arguably one of the most important, albeit difficult to answer questions in the psychotherapy field (Blake, Amaro, Schwartz, & Flinchbaugh, 2001). Limited knowledge about gender and ethnicity as moderators remains ubiquitous in treatment research. Sparse representation of minority individuals in randomized clinical trials (RCTs) and paucity of subgroup analyses based on ethnicity has been well-documented. For example, a recent review of National Institutes of Mental Health (NIMH) funded RCTs, revealed that only 10% and 5% reported moderation analyses for gender and ethnicity, respectively (Mak, Law, Alvidrez, & Pérez-Stable, 2007). A major impediment for conducting these subgroup analyses has been small to moderate sample sizes (80% had less than 200 participants). Ethnic and gender subgroup sizes have been seldom more than 40 with consequently little power to test moderation (Mak et al., 2007).

From this perspective, the state of the literature stands at odds with a growing emphasis on disseminating evidence-based treat-
ments (EBT) on a wide-scale, and researchers have argued that results from existing RCTs cannot be generalized to individuals from ethnic minority backgrounds (Hall, 2001; Sue, Zane, Nagayama Hall, & Berger, 2009). Correspondingly, there has been recognition that treatment needs, processes, and outcomes might differ across gender (American Psychological Association, 2007; Blake et al., 2001). Although girls and women generally have been adequately represented in RCTs, few researchers have investigated potential gender differences in treatment effects (Mak et al., 2007).

Gender and Ethnicity Differences in Drug Abuse Treatment Effects

Within research on adolescent substance abuse treatment, recommendations to improve understanding of ethnic and gender differences in preventing and treating drug use have had limited success (Hall, 2001). Few studies have considered participant ethnicity in their study design and even fewer have included subgroup analyses (Strada, Donohue, & Lefforge, 2006). Szapocznik and colleagues (Szapocznik, Prado, Burlew, Williams, & Samisteban, 2007) noted the disappointing number of published studies regarding substance use prevention and treatment for African American and Latino youth, while Blake et al. (2001) and Kumpfer, Smith, and Summerhays (2008) cautioned that existing literature has not established strong empirical support that prevention programs have been equally effective for girls and boys. Treatment studies typically have been designed primarily to test treatment main effects leaving statistical tests involving subgroups almost always underpowered. Integrative data analysis (IDA) has the potential to maximize existing power based on an augmented N provided by pooled data.

The present study addressed this gap in the research literature by conducting an IDA on five RCTs (i.e., Dakof et al., 2015; Liddle et al., 2011, 2013; 2008, 2009) of Multidimensional Family Therapy (MDFT; Liddle et al., 2002), an evidenced-based adolescent drug abuse treatment program. Based on Bauer and Hussong's (2009) moderated nonlinear factor analysis approach, IDA enabled pooling of individual study data and provided enhanced power to test moderator effects. Participants in these trials were male and female adolescents of European American, African American, and Hispanic ethnicity, 11 to 17 years of age, with documented drug use (in most cases with a drug use disorder diagnosis) and their families. The number of participants meeting study criteria in each of the RCTs ranged from 83 to 224. In addition to providing a robust test of the MDFT intervention main effect across studies, this study sought to extend previous MDFT research in two ways. First, by pooling individual data, power to detect moderator effects was increased. Previously, those individual MDFT trials that tested subgroup effects had not found gender and ethnicity to be moderators (e.g., Liddle et al., 2008, 2009), but the likelihood of finding significant effects was severely compromised because of low statistical power in the individual studies. Second, by modeling drug use involvement as a latent variable, measurement error was attenuated and various observed indicators of drug use involvement across- and within-individual studies were linked.

Multidimensional Family Therapy for Adolescent Drug use

MDFT (Liddle et al., 2011) is a developmentally oriented, family based, integrative outpatient treatment that has blended family therapy, individual therapy, drug counseling, and multiple-systems oriented interventions to impact important psychosocial systems of adolescents and their families. It is a flexible treatment system designed to be appropriate for various patient populations and client severity levels, with different intensities ranging from prevention and early intervention (Study 2, Liddle et al., 2009) to adolescents deeply involved with drugs and the juvenile justice system (Study 3, Liddle et al., 2013). Results from individual RCTs have indicated that receiving MDFT decreased drug use involvement and increased prosocial behaviors more than comparison treatments (Liddle et al., 2011, 2001, 2008, 2009; Rigter et al., 2013). MDFT also has been associated with greater decreased delinquent behavior (Dakof et al., 2015; Liddle et al., 2009, 2011), externalizing behaviors (Liddle et al., 2001), and internalizing symptoms (Liddle et al., 2009). In the five studies included in the current IDA, individual study results indicated that MDFT decreased drug use dependence symptoms to a greater extent than individual cognitive–behavioral therapy (Liddle et al., 2008) and adolescent group therapy (Liddle et al., 2009) among community adolescents referred for drug abuse treatment and adolescents enrolled in a postadjudication juvenile drug court (Dakof et al., 2015). MDFT also decreased frequency of drug use to a greater extent than comparison treatments among adolescents that: (a) received adolescent group therapy (Liddle et al., 2009), (b) engaged in treatment while incarcerated in a juvenile detention facility and remained in treatment following detention discharge (Liddle et al., 2011), and (c) referred for residential treatment (Liddle et al., 2013).

MDFT has been implemented in diverse community settings across the United States and internationally, with study samples of male and female adolescents from varied ethnic groups. Study designs have followed Consolidated Standards of Reporting Trials (CONSORT) guidelines, used intent-to-treat analyses, and participated in multisite RCTs involving independent investigators. Process studies have supported theoretical propositions about the model’s family based mechanisms of action (Henderson et al., 2009). At the same time, little is known about how well MDFT works comparatively with males and females and adolescents from different ethnic backgrounds limiting generalizability, as well as the clinical usefulness, of these findings.

Integrative Data Analysis

IDA is the statistical analysis of two or more independent studies that have been pooled into one (Curran & Hussong, 2009). Additionally, adjustments for measurement noninvariance that include heterogeneity of measurement within- and across-studies and variation in scale type can be accommodated using latent variable modeling approaches. In analyzing moderation, IDA also has advantages over more traditional pooled data techniques. Compared with conventional meta-analysis, which combines summary statistics, IDA, by using individual participant’s data, has increased power to detect group effects and can assess participant-level characteristics as moderators without committing the ecolog-
ical fallacy of attributing study-level effects to individuals (Robinson, 1950). Currently, IDA applications have been limited to studies of developmental psychopathology (Bauer & Hussong, 2009), and, more recently, a substance abuse study investigating measurement equivalence of nicotine dependence symptoms (Rose, Dierker, Hedeker, & Mermelstein, 2013). No studies have used IDA to test moderator treatment effects from RCTs.

The most comprehensive approach for conducting IDA has used moderated nonlinear factor analysis (MNLF A; Bauer & Hussong, 2009) to model a latent variable with commensurate indicators across multiple studies. For the current study, MNLF A performed three important tasks. First, MNLF A accommodated observed indicators with a variety of distributional properties (i.e., continuous, binary, negative binomial, and censored normal). Second, a commensurate measurement model was achieved using latent variable modeling for indicators not measured, by design, across studies under the missing at random assumption (MAR; Little & Rubin, 2002). Additional adjustments for lack of measurement invariance or differential item functioning (DIF) across studies and other important subgroups (e.g., treatment condition, gender, and ethnicity) also were included. Third, nonindependence of observations caused by repeated measures was accommodated using a two-stage procedure whereby a randomly selected calibration sample of independent observations, with a single observation per participant, generated individual factor scores for all observations from all participants. Factor scores were then subjected to latent growth curve modeling. A two-stage approach was necessary because a simultaneous model solution was intractable as existing computer capacity and software cannot accommodate both MNLF A model complexity (nonnormal data distributions, latent mean and variance regression, and DIF testing) and dependency among observations.

The current study conducted an IDA on five RCTs that tested MDFT versus active comparison treatments using multiple indicators of drug use involvement and examining gender and ethnicity as moderators of treatment effects. Specific research questions were:

1. Is MDFT more effective than comparison treatments for males and females?

2. Is MDFT more effective than comparison treatments for African Americans, Hispanic, and European Americans?

Method

Sample

Data for this study came from five RCTs that tested effects of MDFT among adolescents receiving drug abuse treatment (Dakof et al., 2015; Liddle et al., 2011, 2013, 2008, 2009). Among a total of eight MDFT RTCs that have been conducted and had outcome data available for the current study, these five were chosen because of compatibility of participant’s ethnicity and outcome measures across studies. One study was excluded because it was conducted with a European multiple country sample with incommensurate ethnicity categories, that is, no African American, Hispanic data. The other two studies were excluded because of measurement issues. In Liddle et al. (2001), the measure itself—a 10-point clinician rating was substantially different from those used in the included studies. In Dennis et al. (2004), only a single indicator was available for linking with the other studies precluding any study-wide adjustments for measurement invariance in the outcome measure.

All selected studies were conducted in the United States. In the pooled sample, participants were randomly assigned to MDFT or one of the active comparison treatments. Study inclusion criteria were determined by the parent projects, which were roughly similar across studies with participants: (a) aged between 11 and 17 years, (b) meeting criteria for a drug disorder or were referred for drug use treatment by an institution, (c) having at least one parent to participate in treatment and research assessments, and (d) providing informed consent/assent to participate in the study. Table 1 lists sample characteristics for each of the individual trials. Participants were 646 adolescents aged 11 to 17 years ($M = 15.31$, $SD = 1.30$), with 19% female ($n = 126$), 14% ($n = 92$) European American, 35% ($n = 225$) Hispanic, and 51% ($n = 329$) African American. Participants were primarily cannabis users with a minority of participants also reporting alcohol and other drug use, with cocaine and anxiolytics being the predominant illicit drugs outside of cannabis. Results from an independently conducted meta-analysis indicated that the effect sizes of the trials we included adequately represented the population of MDFT effects, as the current study included studies producing the largest (Liddle et al., 2009) and among the smallest (Dakof et al., 2015) effect sizes for substance use.

Individual RCTs

The following provides key details on the individual studies comprising the IDA sample. Please see manuscripts for the parent studies and Table 1 for more information. Study 1 (Liddle et al., 2008) was a RTC ($n = 224$) comparing MDFT and individually delivered cognitive–behavioral therapy (CBT). Both treatments were delivered: (a) by equally experienced therapists, (b) in equal length and intensity, and (c) in the same format. Participants were between 12 and 17.5 years of age and were recruited primarily from juvenile justice (48%) or child welfare (36%) agencies. Study youth were primarily male and African American, and all were drug users, with 75% meeting criteria for cannabis dependence and 13% meeting criteria for cannabis abuse. Study 2 ($n = 83$; Liddle et al., 2009) was a randomized effectiveness study in which, by design, MDFT was compared with adolescent group treatment (AGT) among adolescents 15 years or younger. Referrals came from primarily juvenile justice (45%), or schools (41%). Study youth were primarily male and ethnically diverse: 42% Hispanic, 38% African American, 11% Haitian or Jamaican, 3% European American, and 4% other. At intake, 47% met criteria for substance abuse, and 16% met criteria for substance dependence. Study 3 (Liddle et al., 2013) compared an intensive outpatient version of MDFT to inpatient treatment among youth meeting local (Miami) criteria for residential placement. Referrals came from primarily juvenile justice (18%), or a drug abuse assessment and stabilization facility that received most of its referrals from juvenile justice or child welfare systems (67%). Participants were primarily male and Hispanic. All participants met criteria for a drug use disorder, and, by study design, met criteria for at least one comorbid disorder. Study 4 (Liddle et al., 2011) was a detention-to-
Table 1
Summary of Sample Characteristics and Measures From the MDFI Randomized Controlled Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Gender</th>
<th>Age M (SD)</th>
<th>Ethnicity</th>
<th>Baseline impairment</th>
<th>Drug use measures</th>
<th>Assessments</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liddle et al. (2008)</td>
<td>81% male</td>
<td>15.4 (1.2)</td>
<td>72% AA</td>
<td>M = 14.03 times used 30 days</td>
<td>TLFB (30 days)</td>
<td>Intake</td>
<td>Individual cognitive behavioral therapy</td>
</tr>
<tr>
<td>(n = 224)</td>
<td></td>
<td></td>
<td>10% Hispanic</td>
<td>87% drug dependence</td>
<td>PEI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18% EA</td>
<td>M = 2.14 DSM diagnoses</td>
<td>Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61% in justice system</td>
<td>6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liddle et al. (2009)</td>
<td>74% male</td>
<td>13.8 (1.1)</td>
<td>38% AA</td>
<td>M = 3.65 days used 30 days</td>
<td>TLFB (30 days)</td>
<td>Intake</td>
<td>Group therapy</td>
</tr>
<tr>
<td>(n = 83)</td>
<td></td>
<td></td>
<td>42% Hispanic</td>
<td>16% drug dependence</td>
<td>POSIT</td>
<td>6 weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3% EA</td>
<td>22% in justice system</td>
<td>Urinalysis</td>
<td>Discharge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Liddle et al. (2013)</td>
<td>74% male</td>
<td>15.4 (1.1)</td>
<td>20% AA</td>
<td>M = 30.51 times used 30 days</td>
<td>TLFB (30 days)</td>
<td>Intake</td>
<td>Multimodal residential</td>
</tr>
<tr>
<td>(n = 113)</td>
<td></td>
<td></td>
<td>68% Hispanic</td>
<td>100% drug dependence</td>
<td>PEI</td>
<td>2 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8% EA</td>
<td>M = 3.83 DSM diagnoses</td>
<td>POSIT</td>
<td>4 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81% in justice system</td>
<td>Urinalysis</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>Liddle et al. (2011)</td>
<td>83% male</td>
<td>15.4 (1.1)</td>
<td>60% AA</td>
<td>M = 50.02 days used 90 days</td>
<td>TLFB (90 days)</td>
<td>Intake</td>
<td>Enhanced services as usual</td>
</tr>
<tr>
<td>(n = 154)</td>
<td></td>
<td></td>
<td>22% Hispanic</td>
<td>38% drug dependence</td>
<td>PEI</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18% EA</td>
<td>M = 2.71 DSM diagnoses</td>
<td>POSIT</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% in justice system</td>
<td>Urinalysis</td>
<td>9 months</td>
<td></td>
</tr>
<tr>
<td>Dakof et al. (2015)</td>
<td>90% male</td>
<td>16.1 (1.0)</td>
<td>29% AA</td>
<td>M = 64.34 days used 90 days</td>
<td>TLFB (90 days)</td>
<td>Intake</td>
<td>Group therapy</td>
</tr>
<tr>
<td>(n = 112)</td>
<td></td>
<td></td>
<td>60% Hispanic</td>
<td>37% drug dependence</td>
<td>PEI</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4% EA</td>
<td>M = 1.77 DSM diagnoses</td>
<td>POSIT</td>
<td>12 months</td>
<td></td>
</tr>
</tbody>
</table>

*Note. AA = African American; EA = European American; DSM = Diagnostic and Statistical Manual for Mental Disorders; TLFB = TimeLine Follow-Back; PEI = Personal Experience Inventory; POSIT = Problem Oriented Screening Instrument for Teenagers.
 a Participants in detention at intake by study design. b Participants in post-adjudication drug court at intake by study design.
community study in which participants were enrolled in detention. Participants again were primarily male; most were African American. Approximately 33% of the participants met criteria for cannabis dependence and 29% met criteria for cannabis abuse. Comorbidity was common with participants averaging over two diagnoses at intake. Study 5 was conducted with participants enrolled in a postjudication juvenile drug court (Dakof et al., 2015). Participants were primarily male and of either Hispanic or African American ethnicities. At intake, 61% of youth had a cannabis abuse disorder and 30% met criteria for cannabis dependence. Comorbidity was again common, with conduct disorder (52%) being most prevalent.

Procedures

Research procedures for the individual studies were similar. All studies comprising the IDA sample were approved and monitored by Institutional Review Boards (IRBs) at the universities that conducted the studies. Trained research assistants contacted parents and youth, described study purpose and procedures, including randomization, and obtained written informed consent before the first assessment session. After baseline assessment, adolescents were randomly assigned to either MDFT or an active comparison treatment. Across studies, data were collected at eight time points: baseline (i.e., entry into treatment), and 6 weeks, and 2, 3, 4, 6, 9, and 12 months after baseline. Data collection periods varied between studies. Follow-up rates were good overall, averaging 85% across studies through 12 months but notably lower in Liddle et al., 2008 (Liddle et al., 2008, 57%; Liddle et al., 2009, 97%; Liddle et al., 2013, 97%; 2011, 98%; Dakof et al., 2015, 89%). See Figure 1 for a CONSORT flow diagram collapsing participants across studies. Aside from the inclusion criteria for the individual studies, additional criteria for the pooled IDA sample included no missing data for either ethnicity or gender and all study participants came from European American, Hispanic, or African American backgrounds. Please see individual studies (Dakof et al., 2015; Liddle et al., 2008, 2009, 2011, 2013) for more details on procedures for the individual studies.

Treatments

Core interventions were the same across studies and individuals, and MDFT therapists worked to engineer change in four major life domains: (a) adolescent (intrapersonal and development issues), (b) parent(s) (individual functioning of the parent as well as parenting practices), (c) family environment (family interactions), and (d) community systems influencing adolescent and family (e.g., working with schools, social service agencies, and juvenile justice). In Study 1, both MDFT and CBT were office-based and administered once per week (60–90 min sessions). In the other studies, MDFT was delivered both in a clinic and participants’ homes with ~1–3 sessions per week over the course of 3 to 6 months of treatment. As reported in the individual studies, an acceptable degree of treatment fidelity to MDFT and comparison treatments was achieved. MDFT fidelity was assessed by trained raters using the Therapist Behavior Rating Scale (TBRS; Hogue et al., 1998) or the MDFT Intervention Inventory (Rowe et al., 2013); both scales are validated instruments with strong psychometric properties. With the exception of Liddle et al. (2008), which also used the TBRS to assess fidelity, other studies used observational checklists completed by trained observers to assess the fidelity of comparison treatments. Please see Rowe et al. (2013) for more information on treatment fidelity for the MDFT interventions. Across studies, MDFT more effectively retained youth in treatment than the comparisons; for MDFT the average treatment episode lasted 4.63 months (SD = 3.07), for comparisons, treatment lasted an average of 2.73 months (SD = 2.71).

Comparison treatments, which varied between studies, included individual CBT, residential treatment, and AGT. With the exception of residential treatment provided in Study 3, all were office-based. The common thread running through the comparison treatments was a theoretical foundation of CBT and a focus on the individual adolescent, with minimal to no attention paid to either modifying family dynamics or directly influencing external systems. AGT tended to be based on a risk and protective factor framework, seeking to reduce drug use directly and focusing on accompanying risk factors (e.g., antisocial peers, low self-esteem, poor academic performance, and limited social skills). Groups were “open” (i.e., new members were admitted on a rolling basis) and had ~4–6 adolescents led by a single therapist 2–3 times per week. In Study 1, individual CBT was based on broadly defined cognitive–behavioral theory that conceptualized drug use as learned behavior started and maintained in the context of environmental factors. Treatment occurred in three stages: (a) prioritizing problems and developing a treatment contract; (b) implementing CBT to increase coping and reduce injurious behaviors; and (c) preventing relapse. In Study 3, residential treatment was based on a social learning approach that emphasized positive reinforcement for appropriate coping behavior and social skills and followed a schedule whereby adolescents completed therapeutic activities each week. All comparison treatments were manualized, therapists received initial training and ongoing supervision in the treatment model, and fidelity to the model was assessed. However, with the exception of the CBT provided in Study 1, none of the comparison treatments were evidence-based per se, as they had not been tested in previous controlled trials.

Measures

To reduce measurement error, multiple measures of drug use involvement, which included objective and self-reported drug frequency and self-reported drug-related consequences, were conceptualized as representing an underlying drug involvement latent variable. The combination of consumption and associated problems measures as indicators of the outcome latent variable provided a multidimensional set of clinical indicators associated with drug use disorders. The latent construct was measured by four observed variables: (a) a positive urinalysis for any of five substances (i.e., benzodiazepines, cocaine, amphetamine, opiates, and marijuana), (b) 30 day TimeLine Follow Back (TLFB; Sobell & Sobell, 1992), (c) the Personal Involvement with Chemicals (PIC) scale of the Personal Experience Inventory (PEI; Winters & Henly, 1989), and (d) the Problem Oriented Screening Instrument for Teens (POST; Rahdert, 1991).

TimeLine Follow Back. The TLFB obtains retrospective reports of daily drug use by using a calendar and other memory prompts to stimulate recall. Youth reported on specific substances used daily for either a 30-day (Liddle et al., 2008, 2009, 2013) or
90-day period (Dakof et al., 2015; Liddle et al., 2011) before each assessment. The 90-day and 30-day time periods were harmonized by only using data for the 30 days preceding the assessment with both 30- and 90-day timelines and calculating a total drug use score corresponding to the number of days participants had used any of the five specified substances in the previous 30 days.

Personal Involvement with Chemicals. The PIC is a 29-item scale focusing on the psychological and behavioral depth of drug use involvement and related consequences in the previous 30 days. Items addressed issues such as using substances to feel calm; using them during the whole day, weekends, or at school; and canceling plans to get high. Widely used in applied research settings, it has demonstrated excellent reliability and validity across samples of adolescents from multiple ethnic backgrounds (Winters, Latimer, Stinchfield, & Egan, 2004). Internal consistency reliabilities for the PIC among the IDA sample ranged from .94 to .95.

Problem Oriented Screening Instrument for Teens. The POSIT is a self-report multiproblem screening instrument designed to screen for substance use and other problems. It is a well-validated and reliable instrument that has been widely used in applied treatment settings. The 17-item Substance Use and Abuse subscale was used in this study. Internal consistency reliabilities for the POSIT for the studies comprising the IDA sample ranged from .80 to .85.
Urinalysis. Urine samples were collected at each assessment to substantiate self-reports. Samples were sent to a toxicology laboratory that analyzed specimens using state-of-the-art screening and confirmation methodologies. Screening was conducted for the following substances: THC, amphetamines, benzodiazepines, cocaine, and opiates. Urine was first screened by an enzyme immunoassay (EIA), and then confirmed and quantified by gas chromatography.

Scaling of measures. The urinalysis was a binary variable and scored as 1 if any of the five substances resulted in a positive test and 0 if all substances were negative. The TLFB and POSIT were count variables analyzed as negative binomial distributions to accommodate overdispersion (i.e., conditional variance exceeds the conditional mean), which was significant \(p < .001 \) for both variables. The TLFB was scored from 0 to 150 based on the number of occasions that a participant had used each of the five substances during the 30-day period. The 17-item POSIT was scored from 0 to 17. Scoring of the PEI and POSIT followed procedures discussed in the test manuals. The 29-item PEI was scored from 0 to 29 and analyzed as a censored, from below, normal variable.

Analytic Approach

Overview. Analyses were conducted using software packages Mplus v. 7.00 (Muthén & Muthén, 1998–2012) and SAS v. 9.2. The IDA followed Bauer and Hussong’s (2009) MNLFA procedure and the multiple calibration sample extension (Wang et al., 2013). Initially, the four observed measures of drug use involvement were tested using confirmatory factor analyses (CFA) as manifest indicators of a latent variable. After establishing the measurement model, the analysis proceeded using a two-stage approach. In stage one, an initial calibration sample of one observation per participant was randomly drawn from the pooled data. MNLFA was then used to produce latent factor scores of drug use involvement for all observations from the five MDFT RCT studies. In the second stage, maximum a posteriori (MAP) probability factor scores were analyzed for intervention effects using growth curve modeling. The two-stage process was repeated on 20 multiple calibration samples to achieve stable combined parameter estimates.

Confirmatory factor analysis. In the first step of the analysis, based on the total sample, CFAs were conducted at the item level for the two multi-item measures, the PEI and POSIT, to assess if each of the observed summary scale scores represented a common factor. After establishing adequate fit of a one-factor model for each scale, a CFA tested if the four observed indicators (i.e., PEI summary score, POSIT summary score, TLFB score, and binary urinalysis outcome) had significant loadings on a common factor latent variable.

Differential item functioning. Next, using the calibration sample, subgroup main and interaction effects with respect to the latent mean and variance of the drug use latent variable were tested. Tested subgroups included treatment condition (MDFT vs. comparison), study, gender, ethnicity, and all of the two-way treatment interactions (i.e., treatment by study, treatment by gender, and treatment by ethnicity). All covariates that were significant at the \(p < .05 \)-level were retained in the calibration sample’s model. Latent mean and variance tests were conducted before testing for measurement invariance (or differential item functioning [DIF]) across these subgroups because differences in either the level of the latent mean or latent variance across studies or subgroups could otherwise be mistaken for DIF. DIF was tested for the three indicators that were self-report measures, and indicator intercepts and slopes were adjusted (freed) for any significant \(p > .05 \) DIF parameter that existed. DIF was not tested for the urinalysis measure as it was an objective biological measure ostensibly not subject to measurement noninvariance. A final calibration model was developed that included all latent mean effects, all latent variances with \(p \)-levels < .10, and all significant \(p < .05 \) DIF covariate effects. These levels of significance were chosen to include as many covariate terms as possible while maintaining a balance between model parsimony and goodness of fit. This strategy was followed to mitigate differences between factor score estimates and true scores.

Growth curve analysis. In the next step of the analysis, a final calibration model generated MAP scores (i.e., the mode of the latent factor posterior distribution for person \(j \)) for all participants at all measurement occasions by creating a “dummy” indicator and using the SAS macro nlmixed. For further details on this process refer to Supplementary Material for Bauer and Hussong (2009). Quality of the factor scores was assessed by plotting the \(SEs \) of the MAP scores for the calibration sample. Factor scores at intake, and 6 and 12 months after intake were then analyzed using latent growth curve modeling. These assessment points were selected because at each assessment at least four of the five studies contributed data and minimized potential bias that might be caused by a study by time confound. A log time scale was used in the growth modeling as change over time was nonlinear and there were insufficient degrees of freedom to fit a quadratic growth parameter. Subsequently, the unconditional growth model was expanded to include covariates of the growth parameters. The intercept and linear slope growth parameters were regressed on study, treatment, gender, and ethnicity main effects as well as treatment by gender, treatment by study, and treatment by ethnicity interactions. Of particular interest were the tests of the treatment main effect and the moderator treatment effects on the slope parameters representing change during the 12 month study period.

Multiple calibrations. Following Wang et al.’s (2013) multiple calibration method, the preceding growth modeling was repeated on 20 calibration samples drawn with replacement. Multiple calibrations were combined to increase reliability of the final estimates and eliminate potential selection bias introduced by using a single calibration. Final estimates were an average of the individual calibrations. The \(SE \) of the final estimates incorporated both within- and between-calibration sample variability. In theory, an estimate based on a large number of calibration samples will eventually converge to the maximum likelihood estimate (MLE); however, in practice, obtaining the number of samples to reach convergence would be very time consuming and may only provide marginal gain with respect to precision and statistical power over a prespecified number of samples. A simulation study designed to assess the optimal number of calibrations found that 20 calibrations often achieved stability and provided satisfactory results in comparison to MLE (Wang et al., 2013). Following this guideline, this study similarly relied on final estimates that combined results from 20 calibrations.
Results

Confirmatory Factor Analyses

The POSIT and the PEI, two of the four indicators used to measure drug use involvement, were summary scores derived from scales composed of multiple items. An underlying assumption of the summary scores was that the corresponding-scale represented a common factor. CFAs tested this assumption. For the 17 true-false items of the POSIT, a single-factor latent variable model using a categorical estimator (WLSMV) and robust SEs for dependent repeated observations adequately fit the combined sample data, $\chi^2(119, N = 646) = 468.37, p < .001$, root mean square error of approximation (RMSEA) = 0.033, comparative fit index (CFI) = .961, Tucker-Lewis index (TLI) = .955. All item loadings were significant, $p < .001$ with standardized loadings ranging from .566 to .819 and an average loading of .731. Similar results were found for the 29-item, four-response categories, PEI. A single-factor latent variable model using a categorical estimator (WLSMV) and robust SEs for dependent repeated observations fit the data well, $\chi^2(594, N = 646) = 3,850.58, p < .001$, RMSEA = 0.044, CFI = .955, TLI = .952. All item loadings were significant, $p < .001$ with standardized loadings ranging from .414 to .863 and an average loading of .774.

Having established that the POSIT and PEI summary scores were reasonable indicators of unidimensional scales, the four indicators (i.e., urinalysis, TLFB, POSIT, and PEI) were tested as a one-factor latent variable of the drug use involvement construct. CFA using robust maximum likelihood estimation and robust SEs for dependent repeated measures observations indicated that all four indicators loaded positively and significantly on the single factor, $p < .001$. Traditional fit indices for assessing goodness-of-fit were not available for this model that included count variables among the indicators. However, the significance of the loadings indicated that as the level of the latent factor increased, the participant had a higher probability of a positive urine test, used drugs more often in the last 30 days, had more involvement with drugs, and experienced more drug-related problems. This pattern was consistent with a latent factor representing drug use involvement. Loadings for the indicators were: PEI, 21.66, $SE = 0.60, t = 36.19, p < .001$; POSIT, 1.28, $SE = 0.05, t = 24.21, p < .001$; Urinalysis, 1.460, $SE = 0.10, t = 14.56, p < .001$; TLFB, 2.231, $SE = 0.07, t = 30.09, p < .001$.

Latent Mean, Latent Variance, and DIF Analyses

Twenty calibration samples were drawn by randomly selecting one observation from each participant’s repeated measures using SAS Proc SurveySelect. Covariate analyses of drug use involvement mean and variance and indicator DIF analysis were conducted for each calibration sample. For a calibration sample to be included, the final calibration model that included latent mean, latent variance, and DIF effects had to converge to a proper solution.

Among latent factor means for the multiple calibration samples, there was a pattern of significance (i.e., $p < .05$ in 50% or more of the samples) for higher mean drug use involvement over the entire study period in Liddle et al. (2011) and lower in Liddle et al. (2009) compared with the Dakof et al. (2015) reference group. European American participants also had a pattern of significantly higher means than African American participants. Among the latent variance tests, the follow-up assessments revealed a pattern of significantly greater variances compared with baseline. This pattern of reduced variability at baseline is well known in clinical trials. DIF tests indicated that for the POSIT, there was a pattern of significantly larger intercepts for Hispanic and European American compared with African American participants and smaller intercepts for participants in Liddle et al. (2011) and Liddle et al. (2013) compared with Dakof et al. (2015). For the TLFB, the only consistent DIF pattern was that for the follow-up conditions there were significantly greater intercepts compared with baseline. None of the other latent mean and variance and DIF tests indicated consistent patterns of significance although among individual calibrations there were a few additional terms that were significant at the .05 p-level. These additional terms were retained in the measurement model for that individual calibration.

After completing DIF analyses, for each calibration sample, MAP factor scores were generated for all participants at all of the assessed time points. To evaluate the quality of the factor scores, scatter plots of the estimates as a function of the SEs of the MAP scores for the calibration samples were produced. Figure 2 displays the plot for calibration 17, which was a typical pattern for the calibrations. The pattern indicated that the SEs were relatively small for scores within three SDs of the latent construct mean and provided little information from MAP scores that were low or high (e.g., < -3.00, > 3.00).

Growth Curve Modeling

Before growth curve analysis, the pooled MDFT and comparison groups were tested for differences in relative frequencies of the moderators, gender and ethnicity, and study membership. No significant ($p < .05$) differences were found for these factors. Gender, $\chi^2(1, N = 646) = 0.36, p = .55$; Ethnicity, $\chi^2(2, N = 646) = 2.73, p = .26$; Study, $\chi^2(4, N = 646) = 0.13, p = .998$. Additionally, cell sizes of the MDFT and Comparisons groups were equal, $ns = 323$.

Factor scores from intake, 6 and 12 month assessments were analyzed using latent growth curve modeling. Unconditional linear

![Figure 2: SEs for maximum a posteriori (MAP) factor score estimates from calibration sample 17 as a function of the estimated factor score value.](image-url)
slope models were fit to the multiple calibrations. Model fit statistics indicated that the linear log-time model was an adequate to good fit for all 20 calibrations, RMSEA $Mdn = .040$, range $=.000-.145$; CFI $Mdn = .999$, range $=.944-1.000$; TLI $Mdn = .998$, range $=.833-1.019$. The unconditional models were then expanded to include covariates. For the intercept and slope growth parameters (I, S), covariates included main effects for treatment, gender, ethnicity (European American, African American, or Hispanic), and study. We considered including age as a covariate but ultimately decided not to because of its restricted range and lack of impact on treatment outcomes in preliminary analyses. Additionally, interaction terms for treatment by gender, ethnicity, and study were included with contrasts that tested the treatment effects within the various levels of gender and ethnicity.

Results of the separate calibration model parameter estimates were combined using Wang et al.’s (2013) procedure to produce a combined mean and a conservative estimate of the SE of the combined mean estimator by incorporating both within- and between-calibration sample variability, which served as the basis for a pseudo t test. Final combined estimates indicated that at entry into the study, there was no significant difference between MDFT and the comparison groups, Intercept $b = -0.017$, $SE = 0.052$, $t = -0.50$, $p = .62$. Neither did ethnic groups differ significantly in initial level overall nor by treatment condition, $p > .05$. There was a main effect for gender with females at entry having higher levels of drug use involvement than males in both treatment conditions, $b = 0.126$, $SE = 0.055$, $t = 2.44$, $p < .05$.

There was a significant main effect for Time. Slope $b = -0.215$, $SE = 0.077$, $t = -2.72$, $p < .01$ indicating that in both treatment conditions, participants decreased drug use involvement during the 12 month period. A significant Time \times Gender interaction indicated that for both treatments, females declined more than males, $b = -0.122$, $SE = 0.055$, $t = -2.34$, $p < .05$.

Within-treatment contrasts indicated that for MDFT participants, drug use involvement declined significantly, $b = -0.307$, $SE = 0.071$, $t = -4.26$, $p < .001$, but for comparison participants, drug use involvement did not decline significantly, $b = -0.012$, $SE = 0.089$, $t = -1.34$, $p = .18$. Additionally, a direct test of the Time by Treatment interaction indicated that MDFT participants had decreased drug use involvement significantly more than the participants in comparison groups, $b = -0.185$, $SE = 0.045$, $t = -4.07$, $p < .001$. Cohen’s d for the MDFT treatment effect was 1.05, representing a large effect size. Panel A of Figure 3 graphically displays the growth curves from the combined esti-

Figure 3. Estimated treatment effects for (a) all participants ($n = 646$), (b) males ($n = 522$), (c) females ($n = 124$), (d) Hispanics ($n = 229$), (e) African Americans ($n = 329$), and (f) European Americans ($n = 92$) for the combined calibration samples. MDFT = Multidimensional Family Therapy.
mates for MDFT and comparisons during the study period. Within this overall trend, a significant Time × MDFT × Hispanic interaction indicated that Hispanics receiving MDFT did not decline as much as African American or European Americans receiving MDFT, $b = 0.312, SE = 0.114, t = 2.74, p < .01$.

Moderation

Analyses of moderator (i.e., within-gender and within-ethnicity treatment) effects indicated that for males, European Americans, and African Americans, who received MDFT, drug use involvement declined significantly during the 12 month period, male; slope $b = -0.290, SE = 0.071, t = -4.14, p < .001$; European American; slope $b = -0.273, SE = 0.095, t = -2.85, p < .01$; African American; slope $b = -0.380, SE = 0.071, t = -5.30, p < .001$. Similar to the finding for the treatment main effects, among corresponding comparison groups, drug use involvement did not decline significantly, male; slope $b = -0.093, SE = 0.095, t = -1.00, p = .32$; European American; slope $b = 0.000, SE = 0.130, t = 0.062, p = .998$; African American; slope $b = -0.083, SE = 0.100, t = -0.81, p = .42$. Within each of these participant subgroups, a test of the treatment interaction indicated that the MDFT decline was significantly greater than the corresponding decline in the comparison groups, male; slope $b = -0.197, SE = 0.055, t = -3.89, p < .001$; European Americans; slope $b = -0.273, SE = 0.101, t = -2.70, p < .01$; African American; slope $b = -1.443, SE = 0.457, t = -3.16, p < .001$. Effect sizes for the difference by treatment, measured by Cohen’s d, were 1.17, 1.95, and 1.75, respectively. Panels B, E, and F of Figure 3 display the growth curves for these subgroups by treatment.

For male and Hispanic adolescents, results did not differ by treatment. Participants who received either treatment showed significant declines in drug use involvement, female MDFT slope $b = -0.381, SE = 0.084, t = -4.40, p < .001$; female comparisons slope $b = -0.246, SE = 0.089, t = -2.75, p < .01$; Hispanic MDFT slope $b = -0.215, SE = .105, t = -2.02, p < .05$; Hispanic comparisons slope $b = -0.230, SE = .084, t = -2.66, p < .01$. Direct tests of the within-group treatment by slope interactions confirmed the finding that the declines by treatment did not differ significantly, female slope $b = -0.134, SE = .101, t = -1.20, p = .23$; Hispanic slope $b = 0.015, SE = .063, t = 0.24, p = .81$. Effect sizes were $d = 0.63$ and 0.19, respectively.

Low power is another factor in assessing the null treatment effects for females and Hispanics. Although a principal advantage of IDA is maximization of existing power, in this study, female and Hispanic subgroups had relatively small ns, $n = 126$ and 225, respectively. There was adequate power to detect large treatment effects ($d = 0.90$, Lipsey, 1990), but power to detect medium ($d = 0.45$) effects was less than $.80$. For females, power was .53, and for Hispanics, .78. All other subgroup comparisons had power greater than $.80$. Panels C and D of Figure 3 display the growth curves for females and Hispanics by treatment.

Discussion

Results from IDA of the pooled data from five RCTs that compared MDFT versus active comparison treatments indicated that during the 12-month study period, participants who received MDFT showed significant declines in drug use involvement. For the comparison treatments, only female and Hispanic participants showed significant declines, whereas male, African American, and European American participants in the comparison groups, either did not decline or showed nonsignificant declines. Additionally, for male, African American, and European American participants there was a significant incremental treatment effect for MDFT when compared to the comparison treatments. No incremental effects were found for females and Hispanic participants. These results support MDFT as an effective drug abuse treatment with adolescents of both genders and varied ethnicity.

Additionally, results support Huey and Polo’s (2008) assertion that MDFT is well-established for working with adolescents from ethnic minority backgrounds. Male, European American, and African American adolescents who received MDFT decreased drug use involvement significantly more than comparison treatment peers. MDFT also was effective for female and Hispanic adolescents, although it was not more effective than active comparison treatments as females and Hispanic adolescents were the only two groups who showed benefit from comparison treatments. Another consideration is low power in this study to detect medium size effects for these groups, suggesting a need for additional research.

Because African Americans and males benefit more from MDFT than comparison treatments, it seems as if African American males would benefit most. The fact that MDFT is achieving these effects is encouraging given African American, male youth are disproportionately represented in the juvenile justice system, are underrepresented in treatment, and frequently drop out of treatment early. A comprehensive treatment intervening in multiple systems of influence in young African Americans’ lives, such as MDFT, may be necessary to combat numerous barriers to treatment such youth face. It is not necessarily surprising that MDFT would possess cultural synchrony with this group, as an awareness of culturally meaningful themes for African American youth, and ways to incorporate them in therapy, have been developed within MDFT (Jackson-Gilfot, Liddle, Tejeda, & Dakof, 2001).

On the other hand, females fared almost as well with comparison treatments as with MDFT, and across treatments, females benefited the most. It is not entirely clear why females, and especially Hispanic females, were particularly responsive to treatment, and this should be an area for future research. Further, females were the most impaired group at treatment entry, and results from other MDFT studies have suggested that more severely impaired adolescents benefit the most from MDFT (Henderson et al., 2010).

This study was the first to show MDFT’s effectiveness when multiple indicators of drug use involvement, measured as a latent variable, represented treatment outcome. By using a latent variable, conclusions regarding MDFT’s effectiveness are strengthened in at least two ways. First, the amount of error has been reduced because only shared variance across indicators is represented in the latent outcome. Second, any inadvertent “cherry picking” from studies that have used multiple indicators of drug use involvement, but as is conventional, report only significant results for individual indicators that demonstrate treatment effects, has been eliminated. Another strength of this study was MNLFA’s ability to incorporate indicators with varied and nonnormal distributions into a latent variable. Typically, measures of drug use involvement have nonnormal distributions that have hampered advanced statistical anal-
yses or were analyzed using nonoptimal methods (Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013). Results support the conclusion that IDA parameter estimates need to be based on multiple calibrations. As originally proposed (Curran & Hussong, 2009), only a single calibration provided factor score estimates for performing IDA, but as found in this study, there is sufficient between-sample variability among estimates derived from multiple calibrations, such that reliance on a single calibration would contribute to unreliable results. By using multiple calibrations and Wang et al.’s (2013) procedure for combining parameter estimates, between-sample variability can be taken into account when calculating the SEs used in statistical testing and stable final estimates can be obtained.

One limitation of the current study is that all comparison treatments were grouped together. Hence, conclusions about ineffectiveness of specific comparison groups is unwarranted. Further, it cannot be ruled out that longer treatment episodes, obtained in the MDPT condition, are responsible for treatment differences rather than specific interventions. With Hispanic adolescents, idiosyncratic study characteristics also may have contributed to the lack of treatment differences. Future analyses including longer follow-up durations may help clarify these findings. Generalizability of study results is also limited in some degree as similar research teams (and one investigator) were involved in all of the studies.

Another study limitation includes the inability to use all available time points in the growth modeling. Because some assessment times were represented by only a single study, these observations confounded time and study and were not included in the growth analysis. A related limitation arises from the study’s inability to model interactions between gender, ethnicity, and study, because of the relatively small numbers in the interaction cells resulting in insufficient power for these tests. Notwithstanding that tests of the pooled MDPT and comparison samples did not differ significantly on any of these factors, the uneven distribution of gender and ethnicity by study may have confounded treatment and study effects. Future IDA research would benefit by making every effort to include as many studies as possible so that the maximum number of subgroup relationships could be assessed and generalizability increased.

References

Wang, W., Greenbaum, P. E., & Henderson, C. (2013). *Multiple calibrations in integrative data analysis: When, how many, and how to combine?* Unpublished manuscript, Department of Epidemiology and Biostatistics, University of South Florida, Tampa, FL.

Received September 24, 2014
Revision received June 3, 2015
Accepted June 5, 2015